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Saleem A. Kassam , Member , IEEE

Abstract

Huber ’s robust probability ratio tests for classes of density functions
described by contamination and bounded total-variation models are extended
for band-models for the densities. A connection between the least
favorable (risk) pair of densities and distance-measure based robustness
is made explicit.

1. INTRODUCTION

In [11, Huber developed the ideas of robust tests for binary hypothesis

testing problems . Robust tests were obtained as saddle point solutions with

respect to performance criteria based on the risk. Huber was mainly interested

in classes of probability measures (under the two hypotheses) which contain

contaminated nominal probability measures. In (1],  classes of probability

measures with precribed maximum total—variation from nominal measures were

also considered.

Here we will show that we can extend Huber ’s analyses for the contaminated

mominals classes to classes of density functions in given bands of density

functions lying within known upper and lower bounds for each hypothesis. We

will also point out an interesting distance-measure robustness property of

the least—favorable pairs of probability density functions. This

property connects the hypothesis—testing results to recent results on robust

Wiener filtering by Kassam and List 121 and Poor (33, this recent work having

bean motivated to a large extent by the usefulness of the theory of robust tests

f or hypotheses.
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I
It should be noted that in [4,51 Kuznetsov has also considered hypothesis

testing with similar band—models for the density functions. The band—model may

be more useful in some applications, and does not directly involve the notion

of a nominal density.

2. PROBL~ 4 DEFINITI ON

Let (5),A) be a measurable space and let f be the density function, with

respect to an arbitrary measure ~i on the space , of a probability measure P. We

consider the following classes F
0 ,F1 of allowable density functions under the

hypotheses H0, N1 respectively:

F0 — {f 
~OL ~ ~ 

~~~~~~~ 

ffd~ — 11

F1 {f 
~lU 

ffdu - 1)

Here t
OL’ 

I
OU, tlL~ ~~ 

are non—negative bounding functions which are such that F0
and F1 do not overlap, with voL’ ~lL 

bounded andffOL 
dpi , .P1L dpi < 1. The

upper bounds are possibly extended—real-valued, andffo~ du .ff1~
d1i > i.

Let $ be a test for F0 vs. F1 rejecting F~ with probability 4 (x)  when

X £ is observed , and let L . be the loss incurred in falsely rejecting Hi.

i 0,1. The risk function R(f., 4s) — L~ E~ ~~~~~ i — 0.1, is the criterion
i

of interest in various testing problems (1), and we are thus interested in

obtaining a least-favorable pair of densities (g, g1
) in F0 x F1, so that

~~~~~~~~~ 
•) < R(g~, $) ,  i — 0, 1, for any probability rat.o test • for g0 vs. g1.

Note that the above f~ denotes an arbitrary element of F~.

In the following section we obtain the least-favorable pair (g0, ~~ 
using p

Huber’s techniques, and show that the result reduces to Huber’s when

• f~~, ~~~ are unbounded everywhere . : 1
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3. THE LEAST— FAVORABLE DENSITIE S

Th. introduction of upper bounds 
~0~~

’ f
1~ in the classes of allowable

densities results in a modification in Huber ’s solution in that the robust test

is not always “censored” at constant values. The specific result is the follow-

ing theorem.

Theorem: Th, least—favorable pair of densities (ge
, g

1
) exists, and is defined

by one of either (a). (b) , (c) or Id) below, where 
~~~~ ~~~~~

‘ 
k, and are

constants:

(a) kofoL ‘ 
~1L 

kOfOL ~lU

— flu ~ ~

~lL 
‘ 

~lL 
>

k1~lL ‘ ~OL k
1~ 1L 1 f~~

— ‘ 
~OU ~

f f• OL ‘ O L — k
1

lL

where O < k 0
< k

1
<~~ .

(b) kf
OL + kh , t

lL 
< kfOL ~1U

~1U 
I 
~~0L

1
~lL + kh 

~OL ~ 
~ ~lL ~ ~OU

• ___________
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~1L ~0U 

< 
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~0L + h 
~1L 

I kfOL ~LU

~OL ‘ 
~1U

1
~~ 0L

90 — 
~~~ ‘ 

~0L ~~lL — ~OU

f f <15
OU ‘ OU X1L

1 - 

f < kf
where k — 1L 00 10 — ~)L (1)

1 — 

f~ou —

~lL 
> kf0u f

lu ?. kf~~

and h is some non-negative function.

Cc)
£ofou flu > ~O~Ou ~ ~lL

— 
~lL 

‘ 
~lL > L

~
f00

flu ‘ I

1. 1
~~ ~~t1~lU 

> 
~0L

— 
~oL ~0L ~ 

t1~lU

~OU ~0L < 
£1 10

where ~ 
) > k  > 0, k as in (1), with equality not possibl, in both places.

• 

. 
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(d) In (c) , if g1 is not valid with ~ ~ . then

arbitrary 
~ou — 0

1 ~lu

In (c), if g~ is not valid with + 0, then

arbitrary , f~~ — 0
go —

~OU 
‘

~~~f: The proof of existence of a solution according to either (a) , (b), (c)

(d) is outlined in the Appendix. To prove robustness of the probability ratio

test for the (g0,g1) pair, we have to show that Huber
’s Lemea 2 [1] holds in our

case. We illustrate this for case (a).

As in El], we have to show that

p (±j.ct}~~~
p ~~~~~~~~~~ {-~~ <t }~~~P {

~~~< t }f0 g0 ~l ~~ 
f1 g0

for any real t. Suppose k
0 

< t ~ k
1. Then

Pf t~L~t ) — ff 0
10L

• > ( fJ 0 L
f
-~~~t

~oi.

1~0

• 
. 

-



F~~Tiii ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~
-
~~~~

-
~~~

A

— 6 —

Also,

$
P (—1ct} — 1 —  Itf

l ~0

OL

~~1- Jf
OL

— 1 —  f t 1

g
— p

~l~~~ 0

Similar considerations establish the condition for t~k0 and t~k1. Robustness of

the probability ratio test between and then follows directly from this result (11

Pigure 1 illustrates the form of the least favorable pai r for a simple

example where (a) in Theorem 1 is assu med to be val id. Note that we get Huher ’s

result for the ~—contamtnation classes when the up~’er bounds tend to infinity.

4. DISTANCE-MEASURES AND ROBUSTNESS

It is reasonable to expect that the pair of least favorable densities ~~~

have obtained is the pair of densities “closest” together in some sense. This

is indeed the case, and by employing the general formulation of a distance-

measure between two hypotheses given by Ali and Silvey [6 1 we can show that the

least favorable densities ar. the closest pair in F0 x F1. For probability density

11111 _ _ _ _ _ _  _ _
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functions, a result by Blackwell (7] may be used to show this. This result was

used by Poor (3] to obtain a connection between robust Wiener filters and robust

tests for hypotheses. We now show more directly that the least favorable pairs

minimize the Ali—Silvey distance measure over F
0 

x F1.

The Ali—Silvey distance between f
0

cF
0 

and f
1

cF
1 can be written as

d(f 01f1) — E0{C[L~J}

where L~ — f
1/f

0 
and C is a convex function. Note that the expectation is a

generalized expectation (6] allowing the measure corresponding to f
1 to have a

singular component relative to that for f
0
.

We consider case (a) in Theorem 1 to illustrate the proof of the statement.

We have

d(f 0,f1)-d(g0,g1) - IfoC [L f] - Jg0C(Lg]

— JfO(C(L f]_C[Lg1}+J(fO
_S
O)C(L gJ

~ JfoC’ELgl(Lf
_L
g

) + f(f0
_g
0)c[L~1

— J(f0
_g
0)( C(L

51 — LgC’(Lgl) + 
J 1

_g
1

’(L
8

1

Now J(f0
_$
0

)(C(L
g
l_L

g
C’(L ]) is non—negative because (C[Lg

l_L
g

C ’[L
g
]) is

non—increasing with L~ and because of the definition of g0 in different sets

according to (a), Theorem 1. Specifically,

J(fo—go
)( C(L

8
3_L~C’(L~1) ~ J(f0

_g
0

) (C(k
1
1_k

1
C’(k

1
])

— 0

—~~~~~----- -.-  ~ -•~~~~~~~~~~~-—--—-—--.~~~ - — •- —-.--~~~~~~~~.- —~~~~~~~~~ -~~~~~ --~~-~



because whenever L
1
<k
1 
we have f

0—g0~
O and whenever L

5
>k
1 
we have f

0
—g0~0.

Similarly, J (f1
_s
1

)C ’(L
1

1~0i and we have the result.

*xactly the same conclusion is valid for the least favorable spectral densities

for robust Wiener filtering [2 ,3]. Recently, Poor [8] has obtained similar re—

sults for a related set of problems.

5. CONCLUSION

It has been shown that Huber’s robust testing results can be extended to

classes of probability density functions described by band—models, which do not

require an explicit notion of a nominal density function. The results reduce

to Huber ’s result on contaminated—nominal density classes when the upper bound

becomes large. We have also shown a direct connection between these results

and results on robust Wiener filters through a consideration of distance—

measures over the classes of allowable characteristics.
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APPENDIX
PROOF OF EXI STENCE OF
SOLUTION iN THEOREM

Let P0(k0
) — Jg1 and P1(k 1) —fs0~ with g1, 

g0 defined by (a) in Theorem 1.

The P0 and F1 are continuous functions , P0 non—decreasing and P1 non-increasing.
We have 11* P0

(b~)’1; let u n  P0(k) — a0. Also, un  P1(k)<1 and let lim P1
(k) -

k~O k~~ k~~ k~O

If a1>l a r t  a
~
>1. the solutions k0,k1 always exist. If k0

>k
1 or if one or both

equations P1
(k) — 1, P0(k) — 1 do not have a solution , we check existence of (b).

Now we consider the solution of P0(k) + .~ — P1(k) + ~/k — 1. The first equation

requires P0
(k) — P

1
(k) — t~(l—k)/k. This equation has an infinite number of pairs

of solutions (~,k), and one of these will also be a solution to P0
(k) 1 — t~. We

then check if a solution for (g1,g0
) for these values ~.k can be obtained , as in (b).

Note that ~, ti/k have to be less than unity for a solution to be possible. We

would get -

If (b) fails to give a solution, we consider Q0(t0) - and Q~(t1
) — in

(c). These are continuous and non—decreasing and non—increasing, respectively . if

solutions and for Q0(t 0) - 1 and Q
1
(t~ ) - 1 exist , than necessarily we

cannot have — k — where k was the value considered above [Eq . (1)1. 1! (c)

does not work, a solution of the form of (d) will always exist.
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Fiiure Legend

Figure 1. Illustration of a least—favorable pair (g01g1)
given by part (a) of Theorem
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